Hydrolase secretion is a consequence of membrane recycling
نویسندگان
چکیده
Acanthamoeba releases lysosomal hydrolases continuously into the culture medium. This release is specific for lysosomal hydrolases, but not other cellular proteins, and is energy dependent. The secreted hydrolases can be separated into two groups on the basis of their secretion kinetics: one is secreted at approximately 15% of the cellular activity per hour and the other at approximately 5%. Intracellularly the lysosomal hydrolases are restricted almost exclusively to secondary lysosomes where the hydrolases demonstrate a differential pH-dependent binding to membrane. Hydrolase secretion is not the result of secondary lysosomes' fusing with the plasma membrane since soluble and particulate lysosomal contents are not released at the same rate. Together the data suggest that the secreted hydrolases are trapped in shuttle vesicles that cycle membrane from secondary lysosomes to the cell surface. The inner membrane and content of these vesicles undergo a marked pH shift when, following fragmentation from lysosomes, these vesicles fuse with plasma membrane. This rapid pH shift and the differential pH-dependent membrane binding of hydrolases appear to account for the heterogeneous hydrolase secretion kinetics.
منابع مشابه
EHD3 regulates early-endosome-to-Golgi transport and preserves Golgi morphology.
Depletion of EHD3 affects sorting in endosomes by altering the kinetics and route of receptor recycling to the plasma membrane. Here we demonstrate that siRNA knockdown of EHD3, or its interaction partner rabenosyn-5, causes redistribution of sorting nexin 1 (SNX1) to enlarged early endosomes and disrupts transport of internalized Shiga toxin B subunit (STxB) to the Golgi. Moreover, under these...
متن کاملTreatment of Real Paper-Recycling Wastewater in a Novel Hybrid Airlift Membrane Bioreactor (HAMBR) for Simultaneous Removal of Organic Matter and Nutrients
In this study, a novel integrated Hybrid Airlift Membrane Bioreactor (HAMBR) composed of oxic, anoxic, and anaerobic zones was developed to simultaneously remove organic matter and nitrogen from real paper-recycling wastewater. The removal efficiencies of Chemical Oxygen Demand (COD), ammonium, nitrite, nitrate and Total Nitrogen (TN) for permeate and supernatant were in the range of ...
متن کاملA review of approaches to direct reverse osmosis membrane recycling: a technical, economic and environmental assessment
Background and Objective: Global market growth of reverse osmosis (RO) has led to an increase in annual disposal of membrane wastes. Therefore, evaluation of membrane waste management strategies is important to reduce their adverse environmental impacts. Due to the widespread domestic RO membrane market and their economic considerations, this study aims at investigation the direct recycling met...
متن کاملLiving biofouling-resistant membranes as a model for the beneficial use of engineered biofilms.
Membrane systems are used increasingly for water treatment, recycling water from wastewater, during food processing, and energy production. They thus are a key technology to ensure water, energy, and food sustainability. However, biofouling, the build-up of microbes and their polymeric matrix, clogs these systems and reduces their efficiency. Realizing that a microbial film is inevitable, we en...
متن کاملUnconventional Secretion of Tissue Transglutaminase Involves Phospholipid-Dependent Delivery into Recycling Endosomes
Although endosomal compartments have been suggested to play a role in unconventional protein secretion, there is scarce experimental evidence for such involvement. Here we report that recycling endosomes are essential for externalization of cytoplasmic secretory protein tissue transglutaminase (tTG). The de novo synthesized cytoplasmic tTG does not follow the classical ER/Golgi-dependent secret...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of Cell Biology
دوره 98 شماره
صفحات -
تاریخ انتشار 1984